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ABSTRACT ARTICLE HISTORY
Static measurements are clinically useful in characterising foot Received 7 November 2022
morphology, but it remains unclear to what extent it can influence Accepted 10 March 2023
dynamic lower limb performance. Therefore, the purpose of this KEYWORDS

study was to investigate if foot posture or foot morphology defor- Foot passive stiffness; foot
mation relates to ankle plantarflexion isokinetic strength and spe- morphology; ankle strength;
cific kinetics variables during jumping using principal component jumping; kinetics
analysis (PCA). Thirty-eight physically active participants performed

drop vertical jump (DVJ) onto force platforms and ankle plantar-

flexion contractions in different modalities on an isokinetic dynam-

ometer. Foot posture was assessed using the Foot Posture Index—6

item, whereas foot one-, two- and three-dimensional morphologi-

cal deformation was calculated using the Arch Height Index

Measurement System. A PCA was applied to the ankle plantarflex-

ion and kinetics performance data and correlations between PCs

and foot parameters measured. The analysis revealed 3 PCs within

the ankle plantarflexion and DVJ kinetics variables that captured

more than 80% of the variability within the data, but none of them

showed significant correlations (r<0.27) with any foot variables.

While foot posture and foot morphological deformation remain of

interest in characterising foot morphology across individuals, these

findings highlight the lack of clinical relevance of these static

evaluations at characterising lower limb and ankle performance.

Introduction

The human foot acts as a compliant structure for energy absorption and as a rigid lever for
energy generation during propulsion owing to its passive elastic and active components
(Bruening et al., 2018; Holowka & Lieberman, 2018; Kelly et al., 2018). One of its key
structural features is the medial longitudinal arch (MLA) which lowers and compresses for
storing energy in its passive components (plantar ligaments and aponeurosis) before rising
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and shortening for releasing the stored energy during the stance phase of locomotion (Ker
et al., 1987; Stearne et al., 2016). Nevertheless, the aforementioned spring-like character-
istics are not uniquely passive since MLA compression also resulted in energy storage
through the tendinous tissues of the intrinsic foot muscles (IFM) (Kelly et al., 2019). This
mechanism allows the foot to additionally act as a damper or motor thereby removing or
adding mechanical energy in steady and non-steady state locomotion (Kelly et al., 2019;
Smith, G. A. Lichtwark et al., 2022) as well as decelerating and accelerating the centre of
mass (COM) during jumping (Smith et al., 2021). Between all the multiple vertical jump
tests, the drop vertical jump (DV]) enables a more effective utilisation of the stretch-
shortening cycle particularly in the triceps surae (Bobbert et al., 1987; Bosco et al., 1982)
and so appears advantageous for stimulating the function of the foot’s arch spring.

In parallel to its involvement in mechanical energy conservation, the foot plays an
important role in propulsion as foot stiffness enables the ankle plantar flexors to
generate large plantar flexion moments and propulsive power (Takahashi et al., 2016).
The mid- and longitudinal foot stiffnesses, mainly controlled by the MLA and
transversal tarsal arch (TTA), are of particular interest since they both prevent foot
deformation while optimising foot propulsive work (Venkadesan et al., 2020).
Measuring midfoot stiffness is therefore important but remains a challenging aspect
in non-laboratory settings. To overcome this, several composite measures of foot
morphological deformation have been proposed as indirect measures of foot arches
passive stiffness. This includes clinical composite measures of foot one-dimensional
morphological deformation ‘Navicular Drop’, (ND) (Brody, 1982), ‘Arch Height
Flexibility’ (AHF) (R. A. Zifchock et al.,, 2017) or two-dimensional ‘Foot Mobility
Magnitude’ (FMM) (McPoil et al., 2009) or three-dimensional ‘Quarter-Ellipsoid
Foot’ (QEF) (Fraser & Hertel, 2021).

Using the AHF, previous studies reported that individuals with a stiffer MLA
displayed greater vertical ground reaction force (GRF) magnitude and impulses,
forefoot plantar pressure during walking and running (Cen et al., 2020; Williams
et al., 2014; R. Zifchock et al., 2019) as well as greater vertical stiffness during jumping
(Grozier et al., 2021). Additionally, Snook highlighted that participants with a flexible
MLA measured by the ND presented a reduction of isokinetic ankle plantarflexion
peak torque (Snook, 2001). However, if these measurements are clinically useful in
characterising foot morphology across loading conditions, it is not clear to what
extent it is associated with lower limb kinetics and ankle plantarflexion isokinetic
strength as the aforementioned studies used a between-group difference analysis. In
addition to the necessity of using a different statistical analysis, there is a need to
include the FMM and the QEF measurement in the analysis since the foot deforma-
tion encompasses three-dimensional morphological changes during dynamic tasks
(Fraser & Hertel, 2021).

Therefore, the aim of the study was to understand the relationships between foot
posture, foot one-, two- and three-dimensional morphological deformation, ankle plan-
tarflexion isokinetic strength and DV] kinetics using a Principal Component Analysis
(PCA). It was hypothesised that foot three-dimensional morphological deformation
would be moderately associated with ankle plantarflexion isokinetic strength and DV]
kinetics whereas one- and two-dimensional morphological deformation as well as foot
posture would not.
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Materials and methods
Design

This study was an exploratory biomechanical analysis with a cross-sectional design in
which ankle plantarflexion isokinetic strength, vertical drop jump kinetics and foot
parameters were captured during one testing session. A session was used one week
before the testing session in order to familiarise participants with the different tasks
and registered each individual isokinetic setting parameters. Participants were asked to
avoid strenuous exercises for 48 hours before testing to prevent any fatigue and/or
delayed onset muscle soreness that could interfere with the performance.

Participants

Thirty-eight healthy active individuals (18 males, 20 females; mean age 21.5 + 4.8 years;
BMI 23.5 +2.9 kg/m®) participated in this study. They were included if they met the
following criteria: (1) age between 18 and 45 years and (2) active in some form of physical
activity for at least 30 minutes per day, at least three times a week. Exclusion criteria were:
(1) score of Foot Ankle Ability Measure of daily living and sport <100%, (2) history of foot
and ankle sprain or pain in the past 6 months, (3) leg or foot fracture in the previous year,
severe foot deformity, (4) previous foot strengthening experience in the past 6 months for
at least 2 weeks and more than one session per week. Participants demographic informa-
tion, foot posture and morphological deformation on the dominant limb are detailed in
Table 1. All patients gave written informed consent for their participation and the study
protocol was a priori approved by the local Swiss ethical committee (#2021-01339).

Table 1. Participant demographics and dominant foot posture and morpholo-
gical deformation measures.

Male (n=18) Female (n=20)
N(%) N(%)
Mean + SD Mean + SD

Age (years) 29.6 + 5.1 292 +50
Height (cm) 1732+ 9.0 1728 + 8.8
Mass (kg) 68.9 + 13.8 68.6 £ 13.2
BMI (kg/m?) 239 +3.1 219+20
Level of Physical Activity (AU) 33.1 +£42.1 32.2 +40.0
Dominance

Right 17 (94.4%) 18 (90.0%)

Left 1 (5.6%) 2 (10.0%)
FPI score 36+ 3.1 34+33
FPI group

Highly Pronated 0 (0.0%) 2 (10.0%)

Pronated 4 (22.2%) 5 (25.0%)

Normal/Neutral 12 (66.7%) 12 (60.0%)

Supinated 2 (11.1%) 1 (5.0%)

Highly Supinated 0 (0.0%) 0 (0.0%)
Navicular Drop (mm) 6.9 + 3.0 70+34
Arch Height Flexibility (mm/kN) 77 +24 8.1+44
Foot Mobility Magnitude (cm) 0.6 +0.2 0.6 +0.2
Quarter Ellipsoid Foot

A Surface Area (cm?) -03+65 —06+66

A Volume (cm?) —21.1+288 —225+29.7

A Surface Area to Volume Ratio (%) 0.8+ 0.5 09+0.7

BMI, Body Mass Index; FPI, Foot Posture Index; AU, arbitrary units; A, Delta.
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Procedures

At the beginning of the testing session, limb dominance was determined using a cluster of
three unskilled tasks (gait initiation, stepping down, kicking a ball) and three skilled tasks
(picking up a marble with toes, tracing shapes with foot, stamping out a simulated fire)
(Schneiders et al., 2010). Each task was performed with each leg and preference (right,
left, none) was summed for determining limb dominance at the end of the cluster. The
participants’ average current level of physical activity was assessed and calculated
through a custom questionnaire based on the Godin Leisure-Time Exercise (Godin &
Shephard, 1997).

Foot posture and foot morphological deformation

Foot posture was assessed in relaxed bipedal standing position using the Foot
Posture Index-6 item version (FPI-6) (Redmond et al., 2006). This tool is
a multisegmental clinical quantification tool to assess static foot alignment in all
three planes in order to classify foot posture types (Redmond et al., 2006). FPI-6 has
a good internal concurrent validity (Redmond et al., 2006) and it is known to
possess good to excellent inter- and intra-rater reliability with different experience
level (Evans et al., 2012; Morrison & Ferrari, 2009; Terada et al., 2014). For each of
the six observational criteria we gave a 5-point scale that ranges from -2 to+2, with
negative numbers indicating a more supinated foot posture and positive numbers
indicating a more pronated foot posture. Finally, the final composite score of the
FPI-6 permitted classification of the posture of the dominant foot of each partici-
pant as highly pronated, pronated, normal/neutral, supinated or highly supinated
based on previous cut-off (Redmond et al., 2006).

Foot morphological deformation was assessed using the Arch Height Index
Measurement System (AHIMS) (JAKTOOL Corporation, Cranberry, NJ) which has
been shown to have an excellent intra- and inter-rater reliability at measuring foot
length, foot width, truncated foot length and dorsal arch height (Butler et al., 2008).
As previously mentioned, foot morphological deformation measures are based on
the amount of deformation between an unloaded position and a loaded position.
For the unloaded position, participants were seated on an adjustable chair with their
dominant foot resting on the floor with an estimated weight of 10% of body weight
(BW) (Dempster & Gaughran, 1967). For the loaded position, participants were
asked to stand and place approximately 95% of their entire BW on their dominant
foot, while the other foot rested lightly on the floor. Before the testing session,
participants were familiarised with each bodyweight threshold by using a force
platform (ForceDesks FD4000 Dual Force Platforms, Vald Performance, Brisbane,
Queensland, Australia). This method differs from all the previous studies using
a bipedal standing position (50% of BW). Since the IFM shows little to no activity
during double-limb upright standing (Basmajian & Stecko, 1963; Mann & Inman,
1964) but are active during single-limb upright standing (Kelly et al., 2012; Ridge
et al., 2022) using a ‘quasi’ single leg stance position in the loading condition allows
a greater activity of the IFM, which increases their contribution in controlling foot
arches deformation.
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Foot one-dimensional morphological deformation was calculated by the AHF
(R. A. Zifchock et al., 2017) using the following equation:

hsitting — h standing “ 10000
0.85xBW 9.81

AHF (mm/kN) = (1)
where h is the dorsal arch height (measured in centimetres) at half of the foot length and
the 0.85 coefficient assuming an 85% change in load from the sitting position (10% BW)
to the standing position (95% BW).

A second measure of one-dimension deformation was assessed using the ND (Cote
et al., 2005) calculated using the following equation:

ND (Cm) = NHsitting_NHstanding (2)

where NH is the navicular height (in centimetres) measured by a manual caliper
(resolution : 0.02 mm).

Foot two-dimensional morphological deformation was calculated by the FMM
(McPoil et al., 2009) using the following equation:

2
FMM (Cm) :\/<hsitting_hstanding> +(Wsitting_wstanding)2 (3)

where h is the dorsal arch height at half of the foot length and w is the foot width (all
measured in centimetres).

Finally, foot three-dimensional morphological deformation was calculated by the QEF
developed by Fraser et al. (Fraser & Hertel, 2021). This evaluation consists of measuring
the surface area (SA) of deformation characterising the widening and lengthening of the
foot during loading using the following equation:

SA (cm?)= 7[0.3333((0.5.Lw) 754 (0.5.Lh)+(w.h) -7%) | ***! (4)
A SA = SAsitting — SAstanding
where | = total foot length, w = foot width and h = dorsal arch height (measured in
centimetres).
The volume (V) of deformation characterising the deformation of the MLA and TTA
during loading using the following equation:

V (em’) = 1.0467 (0.5.1.w.h) (5)

A V = Vsitting-Vstanding
The surface area-to-volume ratio (SA:V) characterising the change in both widening
and lengthening in relation to foot arches deformation using the following equation:

ASA:V (%)=(SA:Vstanding— SA: Vsitting)x100 (6)

Drop vertical jump kinetics

Before performing the double-leg DV] task, participants undertook a standardised
warm-up consisting of 2 minutes of jogging, 5 lateral, forward and backward
lunges per side, 5 deep squats, 10 double-leg pogo jumps in place, 10 double-
leg forward, backward hops and 10 jump lunges per side. After the warm-up,
participants were given 5 familiarisation trials to practice the double-leg DV] task
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at maximal effort. A box height of 30 cm adjacent from two force platforms
(ForceDesks FD4000 Dual Force Platforms, Vald Performance, Brisbane,
Queensland, Australia) was used to complete the bilateral DV]. Before each DV]
trial, the force platforms were zeroed to reduce the signal noise. Participants were
instructed to keep their hands placed on iliac crests, to drop off the box, land on
the plates with both feet at the same time and rebound off the force platform as
quickly as possible aiming for maximum jumping height. They were then
instructed to land softly remaining completely still on the platforms for 2-3
seconds. Verbal instructions to maintain knee and hip extension during flight
time were also given. When the previous instructions were not followed, trials
were deemed invalid and participants were asked to repeat. Participants completed
three successful trials and the mean of three successful trials were used in the
final analysis. In order to increase the external validity of the study while not
altering performance, every participant jumped with standardised shoes presenting
a minimalist index of 95% (Esculier et al., 2015).

Raw data of the vertical GRF from the force platforms was recorded at 1000 Hz and
analysed using the commercially available software (ForceDecks, Vald Performance Pty
Ltd., Brisbane, Australia) with a 20 N threshold used to delineate the start and the end of
the ground contact and the end of the flight phase. Eccentric phase of the DV] was
identified as the time from the start of the ground contact until the vertical velocity of the
centre of mass reached 0 m/s. The concentric phase was identified as the time from the
end of the eccentric phase until the instant of take-off. Variables of interests calculated
from the vertical GRF by the manufacturer software can be found in Table 2. and were
classified as performance variables performed by the work of both feet and foot dominant
kinetics variables.

Table 2. Variables of interest for the drop vertical jump and the
ankle plantarflexion isokinetic strength tests.

Drop Vertical Jump (Performance variables)
Jump height (cm)

Peak power (W)

RSI mod (m/s)

Vertical velocity at take-off (m/s)

Contact time (s)

Flight time (s)

Drop Vertical Jump (Foot dominant variables)
Eccentric vertical mean force (N)

Concentric vertical mean force (N)

Eccentric vertical impulse (N.s)

Concentric vertical impulse (N.s)

Vertical active stiffness (N/m)

Vertical passive stiffness (N/m)

Drop landing RFD (N/s)

Vertical mean eccentric/concentric force ratio (%)
Ankle Plantarflexion Isokinetic Strength
Maximal isometric torque (Nm)

Concentric peak torque at 30°/s (Nm)

Mean endurance peak torque (Nm)

Maximal total work (J)

Fatigue index (%)

RSI mod, Reactive Strength Index modified; RFD, Rate of Force Development.
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Ankle plantarflexion isokinetic strength

Ankle plantarflexion isokinetic strength was assessed after the DV] task using an iso-
kinetic dynamometer (Biodex Medical Systems Inc, Shirley, NY). Three testing modal-
ities were used to assess three different neuro-muscular capacities of the plantar flexors:
maximal isometric voluntary torque (MIVT), maximal concentric peak torque, and
endurance strength. In the three testing methods, participants were in supine position
with the hip in 0° of extension and the knee between 0° and 10° of flexion (Snook, 2001).
Their foot was strapped to a pedal with the centre of axis of rotation aligned with the
medial malleolus and a correction for gravity was applied.

In the first test measuring MIVT with ankle at 0°, participants were asked to perform 6
submaximal contractions from 50% to 90% of their self-perceived MIVT on the isometric
mode of the dynamometer. Then participants were required to perform three maximal
isometric voluntary contractions during 5 seconds separated by a minimum of 40 sec-
onds of rest. Data was collected at 100 Hz and analysed using a customised Microsoft
Excel spreadsheet (Microsoft Corporation, Redmond, USA, [2016 version]). The highest
torque (expressed in Nm) was considered as the MIVT and was calculated using the
difference between the mean of a 100 ms window around the peak (50 ms before and
after) and one at baseline of the torque-time curve (Tourillon et al., 2022). For the second
test, the dynamometer was switched to the isokinetic mode. Five submaximal contrac-
tions at 30°/s were given before participants were instructed to perform 4 maximal
plantarflexion contractions at 30°/s in a range of motion between 20° of plantarflexion
and 10° of dorsiflexion. Maximal peak torque was calculated as the highest peak torque
over the four contractions and was expressed in Nm.

The third test assessed endurance strength of the plantarflexors using a previously
studied isokinetic fatigue protocol (Fourchet et al., 2012). Participants were required to
perform 30 consecutive maximal ankle plantarflexion contractions at an angular velocity
of 30°/s (120°/s of return) in the same range of motion as the previous test. Peak torque
and total work were calculated for each repetition of the 30 contractions. Three methods
of calculation were used to assess endurance strength with 1) the mean endurance peak
torque (Nm) representing the sum of the peak torque of each contraction, 2) the total
work (J) representing the sum of the work of each contraction and 3) the fatigue index
(%) representing the difference between the mean peak torque of the last three repetitions
over the mean peak torque of the first three repetitions. These three methods of analysis
were chosen as they have shown to possess higher reliability in comparison to other
methods (Bosquet et al., 2010; Porter et al., 2002).

Statistical analysis

The statistical analysis comprised a Principal Component Analysis (PCA) and a common
correlation analysis between illustrative variables and the identified principal components
(PCs). This method consists of analysing a selection of discrete points that allows biome-
chanical variables to be merged by patterns of common variation and to assess their linear
relationship. Before applying the PCA, variables were centred (substraction of mean),
normalised (division of SD) and reduced (Husson et al., 2010). PCA was then applied to
the data from the DV] and isokinetic performance tests using R software (R Foundation for
Statistical Computing) with the Factominer package. Foot posture and morphological
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deformation data were considered as illustrative variables. To understand the relationship
between the identified PCs and the illustrative variables, a Pearson product-moment
correlation with an alpha-level of 0.05 was adopted. Correlation coefficients were inter-
preted as follows (small = 0.1, moderate = 0.3, and large = 0.5) (Hopkins et al., 2009).

Results

Eighteen PCs were identified within the vertical drop jump and the ankle plantarflexion
isokinetic strength tests, which captured 99% of the variability within the data. Of these
PCs, three captured approximately 80% of the variability within the data (PC1: 45.5%;
PC2:21.8%; PC3: 12.2%). More than 75% of the contribution was created by 8 variables
(r>0.70) for PCI1 including both power, reactive strength and stiffness capacities
during the DV] (Table 3). For the PC2 more than 75% of the contribution was created
by 7 variables (r>0.50) including jump height drivers variables (concentric impulse,
take-off velocity, flight time) as well as ankle plantarflexion isokinetic strength variables
(Table 3). For the PC3, more than 75% of the contribution was created by 5 out of 7
variables (> 0.37) from PC2 so demonstrating redundancy. These three PCs showed
moderate (r = 0.37; PC1), large (r = 0.51; PC3) and very large correlation (r = 0.73; PC2)

Table 3. Principal components and their relationship with foot posture and foot morphological
deformation.

Principal Component 1 (PC1) Foot Posture and Foot Morphological Deformation
Variables contri. (%)  rvalue Variables r value with PC1
RSI mod 11.77 0.98*  Foot posture index -0.06
Concentric vertical mean force 11.42 0.97*  Navicular drop 0.25
Peak power 11.34 0.96*  Arch height flexibility 0.20
Active stiffness 11.08 0.95*  Foot mobility magnitude 0.20
Passive stiffness 10.28 0.92*  QEF A surface area -0.08
Eccentric vertical mean force 8.89 0.85*  QEF A volume —-0.14
Contact time 7.90 —0.80*  QEF A surface area/volume ratio 0.12
Drop landing RFD 6.19 0.71*

Principal Component 2 (PC2) Foot Posture and Foot Morphological Deformation
Variables contri. (%)  rvalue Variables r value with PC2
Concentric vertical impulse 16.62 0.81*  Foot posture index 0.04
Vertical velocity at take-off 13.84 0.74*  Navicular drop 0.18
Flight time 13.76 0.74*  Arch height flexibility -0.24
Mean endurance peak torque 9.41 0.617*  Foot mobility magnitude —-0.10
Maximal total work 8.31 0.57*  QEF A surface area -0.07
Maximal isometric torque 7.19 0.53*  QEF A volume -0.04
Concentric peak torque at 30°/s 6.80 0.52*  QEF A surface area/volume ratio -0.24
Principal Component 3 (PC3) Foot Posture and Foot Morphological Deformation
Variables contri. (%) rvalue Variables r value with PC3
Maximal total work 15.36 —0.58*  Foot posture index —-0.04
Flight time 11.54 0.50*  Navicular drop 0.19
Vertical velocity at take-off 11.42 0.50%  Arch height flexibility 0.01
Mean endurance peak torque 10.96 —0.49*  Foot mobility magnitude 0.07
Eccentric impulse 9.74 0.46*  QEF A surface area -0.25
Drop landing RFD 9.70 0.46*  QEF A volume -0.27
Concentric impulse 6.86 0.39%¥  QEF A surface area/volume ratio 0.12
Maximal isometric torque 6.15 -0.37*

RFD, Rate of Force Development; QEF, Quarter Foot Ellipsoid; RSI mod, Reactive Strength Index modified.
contri.: represents the contribution (in percentage) of each variable to the principal components.
*

p <0.05.



SPORTS BIOMECHANICS (&) 9

with DV] height demonstrating different performance strategies even if the verbal cue
was the same for every participant. Finally, we observed that none of these three
identified PCs within the DV] and ankle plantarflexion isokinetic strength data pre-
sented significant association with foot posture of foot morphological deformation
parameters (r <0.27; p > 0.05) (Table 3).

Discussion

The aim of this study was to determine if there was a relationship between foot posture,
foot one-, two- and three-dimensional morphological deformation, ankle plantarflexion
isokinetic strength and DV] kinetics. A further objective was to determine if foot three-
dimensional morphological deformation presented a stronger relationship in compar-
ison to foot posture and foot one-, two-dimensional morphological deformation. The
primary finding was that none of the foot variables (posture, deformation) were sig-
nificantly associated with the identified PCs. Another important and novel finding was
that foot three-dimensional morphological deformation was not more associated with
ankle plantarflexion isokinetic strength or DVJ kinetics not supporting our hypothesis.

The main result of this study does not comply with previous studies stating that MLA
flexibility measured by the ND and the AHF influences GRF characteristics during
various dynamic tasks (Cen et al., 2020; Grozier et al., 2021; Sudhakar et al., 2018;
Williams et al., 2014; R. Zifchock et al., 2019). The previous studies used a between-
group analysis but did not clarify the relationship between foot arch flexibility and GRF
kinetics. By using a PCA in this study, we demonstrated that foot one-dimensional
morphological deformation displays a weak association with force absorption and gen-
eration of the lower limb during a DV]. This is in contradiction with the study of Grozier
et al. showing that individuals with a stiffer MLA defined by a low AHF displayed greater
active vertical stiffness during DVJ (Grozier et al., 2021). In our study, AHF was poorly
associated with active stiffness (r=0.19) meaning that having a stiffer foot arch is not
strongly associated with having an increase of vertical stiffness during a DV]. More
surprisingly, adding clinical composite measures of foot two- and three-dimensional
morphological deformation in the analysis did not increase the relationship. Indeed, even
foot deformation encompasses three-dimensional morphological changes during DV]
for dissipating and generating energy (Smith et al., 2021), the FMM and QEF parameters
presented zero to weak association (r<0.27; p>0.05) with the identified PCs. These
results highlighted that even if the measurements (FPI, ND, AHF, FMM, QEF) are
clinically useful in characterising foot morphology across loading conditions, they are
still derived from two static positions and may not specifically translate to dynamic foot
function as previously studies mentioned (Behling & Nigg, 2020; Paterson et al., 2015).
Therefore, even if these parameters can be measured quickly and accurately with low-cost
instrumentation, caution is needed to use them on their own to explain the role of the
foot arches flexibility at influencing GRF characteristics during DVT.

The secondary results of this study are in disagreement with a previous study that has
shown that participants with a flexible MLA measured by the ND presented a reduction of
isokinetic plantarflexion peak torque (Snook, 2001). The rationale behind these results was
that the midfoot of the flexible group remains ‘unlocked’ and therefore generates less ankle
plantarflexion torque (Snook, 2001). However, our study highlighted that actual clinical foot
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arches passive stiffness measurements are not significantly associated with any ankle plantar-
flexion isokinetic variables. Although the significance of a stiff midfoot has been demon-
strated to help to efficiently transfer the mechanical power generated by the ankle during
push-off (Takahashi et al., 2016), these measurements (ND, AHF, FMM, QEF) may probably
not be enough to completely explain the regulation of foot stiffness. Indeed, previous studies
demonstrated the relevance to consider other factors such as the potential of foot muscles to
actively regulate the arch stiffness (Kelly et al., 2015, 2019). As such, the extrinsic foot muscles
(EFM) are the dominant MLA stabilisers in the foot complex (Farris et al., 2019; Maharaj
et al., 2017), whereas the IFM is more prone to provide forefoot stiffness during propulsion
enhancing the ankle joint torque production by controlling the leverage of the foot (Farris
et al., 2020; Smith et al., 2021; Smith, G. Lichtwark et al., 2022). Taken together, these studies
highlighted the importance of the EFM in combination with IFM and viscoelastic structures
at regulating foot stiffness during ballistic tasks. This may explain the results of Yamauchi
et al. who showed that toe flexors strength was associated with vertical jump performance
(jump height, peak power, reactive strength) and GRF vertical impulse whereas arch height
was not (Yamauchi & Koyama, 2020). Hence, relying on foot muscle strength seems an
important parameter to consider when assessing the influence of human foot stiffness on
ankle plantarflexors force transfer. However, further studies are warranted to clarify the
relationship between foot active stiffness and ankle plantarflexion isokinetic strength.

A last finding of our study relates to the variables participating in PC1 and PC2
construction. PC1 is being composed of variables related to power (peak power), reactive
strength (RSI mode) and stiffness capacities (active and passive stiffness, drop landing RFD)
during DVJ. Thus, it represents a greater ability to use the stretch-shortening cycle by
rapidly moving from an eccentric to a concentric action in a short contact time. This ability
enables a greater amount of energy to be stored and returned through the contractile and
elastic tendinous tissue of the lower limb allowing supramaximal power outputs (Bosco
et al., 1982; Farris et al., 2016; Lichtwark et al., 2007). However, even if the foot-ankle joint
is a key site of power release in jumping (Bobbert, 2001) our study demonstrated that this
stretch-shortening cycle ability is not associated with foot posture and foot morphological
deformation. In addition, variables from PC2 are both composed of ankle plantarflexion
isokinetic strength outcomes and DV] kinetics parameters (concentric vertical impulse,
vertical velocity at take-off and flight time). This relationship between kinetic variables
could be explained thanks to forward dynamics (Linthorne, 2001) as a high concentric
impulse is the resultant of high force generated in triple extension of the lower limb. This
impulse allows a high vertical velocity at take-off, which then dictates flight time. Therefore,
our results highlighted that ankle plantar flexors isokinetic strength enables high propulsive
force to be generated during DVJ. This is in accordance with previous studies showing that
ankle plantar flexors play a critical role in accelerating the body rapidly during ballistic tasks
(Marshall et al., 2014; Pandy et al., 2021; Vanezis & Lees, 2005). Interestingly, it has been
demonstrated that a nerve block aiming at deleting the active contribution of the IFM
affected ankle plantarflexion mechanics (Farris et al., 2019; Kessler et al., 2020; Smith,
G. Lichtwark, et al, 2022). This functional coupling between IFM activity and ankle
function could explain the improvement in performance during vertical jump
(Kokkonen et al., 1988; Unger & Wooden, 2000) and horizontal jump (Goldmann et al,
2013; Hashimoto & Sakuraba, 2014) after a foot strengthening protocol. Thus, our results
associated with previous studies highlighted a greater relationship between ankle
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plantarflexors, foot muscles strength (IFM & EFM) and jumping performance kinetics in
comparison to foot posture and foot morphological deformation individually.

The present study had several limitations. First, we demonstrated no associations
between foot deformation and ankle plantarflexion peak torque during an analytic iso-
kinetic task, which does not exclude that ankle plantarflexion moment and power could be
associated with foot deformation during the propulsion phase of a functional task like the
DV]J. Additionally, the sample size of participants included in the study was heterogeneous
regarding the level of physical activity (Table 1) and the type of sport practice, which may
have generated varied performance strategies during jumping and masked certain poten-
tial associations. Finally, we evaluated kinetics on the dominant foot during a bilateral DV]
task instead of a unilateral one which could have changed the results of the study. This
choice was made because of the study sample. Indeed, unilateral DJV has been shown to
expose the limb to significantly greater GRF (Maloney et al., 2018). This higher intensity
task involves a level of technique, strength and timing that only experienced athletes would
be able to achieve, which was not the majority typology of our sample

Conclusion

The results demonstrated that foot posture and foot morphological deformation were not
associated with DV] kinetics nor plantar flexion performance during isokinetic tests. While
these functions could be measured quickly and accurately with low-cost instrumentation,
these findings highlight the lack of clinical relevance of these static and passive evaluations at
influencing ankle plantarflexion isokinetic strength and lower limb force absorption and
generation during jumping. Further studies are warranted to focus on the validation of
specific dynamic foot measures (e.g. active stiffness, strength) in order to help clinicians
understand the role of the human foot in enhancing lower limb performance during ballistic
tasks.
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